“可以。”
现场其他教授纷纷停下手里的工作,竖起耳朵。
盖尔:“能先说一说你的思路吗?”
江扶月:“这道题是从代数角度对复微积分几何研究的初步探索……这里提到的方程,其实就是厄米特-杨振宁-米尔斯方程的变形……”
盖尔听完一时恍惚。
其他教授也有点懵。
这道题还能跟厄米特-杨振宁-米尔斯方程扯上关系?
他们不约而同翻出试卷原题,又把第六题从头到尾看了一遍。
不看不知道,一看吓一跳!
有几个教授甚至直接动笔,开始当场演算起来。
最终证明,确实是厄米特-杨振宁-米尔斯方程的简易变形!
连这道题的提供者Y国领队,都是一脸后知后觉的表情。
说明在这之前,他自己也不知道!
这就……很尴尬了。
他们一群教授还不如一个学生心明眼亮?
江扶月对众人的表现状若未见,自顾自继续:“既然是厄米特-杨振宁-米尔斯方程的变形,那我想,是不是可以从量子力学标准模型的角度来思考这道题的解法?”
这个问号也打在了在场所有人心上。
参考答案是常规解法,也是本次考试大家普遍采用的解题思路。
即运用复杂代数计算,几次转换带入几何模型,最终求解,得出最后答案。
不仅运算量庞大,中间错一步都可能直接影响到最后结果,还需要运用建模思想,对高中生来说,难度可以说已经超top级。
再看江扶月的答题卷,清爽干净,解题思路多为逻辑推导,计算量非常小。
但最终结果却与参考答案一般无二,这引起了阅卷老师的注意。
当场把这张答题卷拎出来,众人凑在一起分析。
却还是没有一个清晰的思路,甚至有些步骤他们看都没看懂,但也不能草率地说人家学生就是错!
毕竟,正确答案摆着呢,蒙也不带这么准啊。
所以才有了如今邀请江扶月本人前来面谈这一幕。
盖尔:“那你能解释一下中间这几个步骤吗?”
江扶月:“我需要一块白板,一只马克笔。”
盖尔朝助手微微点头,后者很快准备好。
江扶月揭开笔帽:“众所周知,复微分几何领域有两个方程至关重要,一个是成为量子力学标准模型的厄米特-杨振宁-米尔斯方程,另一个是和相对论紧密相关的凯勒-爱因斯坦方程。这两个方程都来自物理学。”